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Abstract:- Weak and strong invariance principles are

established for strictly stationary sequences satisfying a mixingq

assumption which has two parts", one based on the strong mixing -

cniion with a polynomial mixing rate and the other based on the - '

P-mixing condition. .'-rf AA1*'-'j . V 4

I. INTRODUCTION

Suppose (X~ k e ZI is a strictly stationary sequence of

* (real valued) random variables on a probability space (fl,Y,P)

For J~ & L A define Y L 0(X k J S k :5 L) .For each

n 1 define

0 0
a(n) suplP(A nl B) -P(A)P(B) I A e ~- B e F~-00 n

p(n) supICorr(f,g)l f C_ Y 29! g -e-YY

'P(n) suplP(BIA) -P(Bfl ,A e _- , B -e 9r n P(A) > 0

The sequence is said to be "strongly mixing" if a(n) -. 0 as

n- , "p-mixing" if p(n) -# 0 as n -. ,and "?-mixing" if -

V(n) -. 0 as n -. ~.It is well known that p-mixing implies strong-

* mixing and (see Ibragimov and Llnnik [18, Theorem 17.2.3]) 'P-mixing

implies p-mixing.

Mixing types of dependence lead to many useful limit theorems

*with broad applicability in statistical mechanics (see e.g. Denker

and Philipp (12]) or statistics in general. In order to establish
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the central limit theorem for strongly mixing sequences, the most

instrumental way is to find a good estimate for the rate of 0

convergence of a(n) to zero. In some situations it is difficult

to compute this rate, and one has to look for an alternative

approach such as verifying the p-mixing or even f-mixing condition

(perhaps without concern for mixing rate). When this approach also

fails, there is another possibility: to show that there exists a

sequence (D n of "large nice events", with P(Dn ) n 1 as n ,

such that for large n the sequence (Xk} restricted to D has ak n

small value for p(n) or fin) , converging to zero as n - .

One might refer to such a condition as a "restricted p-mixing" or

"restricted f-mixing" condition. This is a little vague, but as a

specific example the well known "absolute regularity" (weak

Bernoulli) condition can be formulated as a "restricted f-mixing"

condition; see Shields [24, p. 89]. This condition was studied in

many papers on limit theory for dependent random variables; see e.g.

Volkonskii and Rozanov [25], Gastwirth and Rubin [14], Yoshihara

[26], Berbee [1], and Dehling and Philipp [11].

The purpose of this paper is to study limit theory under

"restricted p-mixing" conditions. Now the p-mixing condition itself

can be formulated in terms of pairs of events, as follows (see (6],

[7, Theorem 1.1(iil)], or [8]):

P

p.'''F '-

,, . o -
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[sup 1/2 , A E ,B E ,P(A)P(B)> 7.
gPA)P(A)P(B)

..0 as n

One can formulate various "restricted p-mixing" conditions,

depending on whether one uses pairs of events or pairs of

X -functions, on whether (for each n )one "conditions" on the
2

"large nice event" D or uses some other way of analyzing theI n
sequence (Xk restricted to D ,and also on whether extrak n

assumptions are imposed on Dn (e.g. D 9r 0O Among thesen n

conditions, the following seems to be one of the least restrictive:

There exist sequences {a }and (A )of nonnegative real numbers,n n
with a -0 and A 0 as n such that

n n

Vn 1 :=D E V such that (i) P(D ar 1A
n n n

0and (ii) VA e T_ YBE e (1.1n

[P(AnBfD n P(AnD n)P(B/ D -S A n P(AnD n )P(B:D )

A careful but simple calculation will show that (1.1) implies

deednpnwehroeue ar feet rpiso i-. -

Z2-fnctonson hethr (or ech ) oe "ondiion" onthe- "
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00Vn > , VA e , VB ,

JP(A n B) - P(A)P(B)l -< a + A [P(A)P(B)] 1 2  (1.2)
n n

for the same sequences (an) and (An ) Indeed, (1.2) seems to ben n

implied by, as well as being similar to but also simpler than, any

reasonable version of a "restricted p-mixing" condition as described

above. Accordingly, our purpose will be well served by simply -

studying limit theory under condition (1.2); this is the condition

that will be used in all of our results.

The conditions (1.1) and (1.2) (with a - 0 and A - 0 ) can
n n

be described as "two-part" mixing conditions, and each implies

strong mixing with rate a(n) _ an + A n It is well known thatn n" -

strong mixing does not imply absolute regularity. We conjecture

that condition (1.1) (that is, the assumption that there exists

a - 0 and A - 0 such that (1.1) holds) likewise describes an n
proper subclass of the strongly mixing stationary sequences.

On the other hand strong mixing implies (1.2) (with an  a(n)

and A 0 ). The difference between (1.2) and the usual -"
n

formulation of the strong mixing condition is in terms of mixing

rates. Our weak invariance principle (Theorem 1 below) assumes a
certain polynomial rate for the convergence of an  to 0 , while

A can tend to 0 arbitrarily slowly. No assumption is made there
n

on the rate of convergence of a(n) to 0; this rate may be

essentially as slow as that of A This will be shown in Theoremn

3 below. That theorem and the comments following it indicate that

... "
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our Theorems 1 and 2 extend the class of strongly mixing stationary .* -

sequences that are known to satisfy weak or strong invariance

principles.

The idea of looking at conditions (1.1) and (1.2), and

"restricted p-mixing" conditions in general, aro.e from discussions "

with E. Presutti concerning the asymptotic behavior of a particle

interacting with a semiinfinite ideal gas in a Bernoulli flow. (See

Boldrighini, De Massi, Noguelra, and Presutti [3].)

For a given strictly stationary sequence (Xk} of random

variables, we shall define for each n k 0 the partial sum

I.

S : X I+...+X n

where S 0 If EX0 =0 and EX2 < then for each n -1

the (non-negative) number on will be defined by

02 = ES2

n n

For each n = 1,2,3,..., provided a n > 0 define the process

(Wn (t) , 0 : t : 1) to be the random continuous polygonal line on

[0,1] with vertices at the points t = 0 , 1/n , 2/n,...,l where

W (k/n) = lS Vk 0,1,2,.,nn n k

Our first theorem will be a weak invariance principle under

finite (2+8)-th moments (8 > 0) and eqn. (1.2) with a certain

. •
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polynomial rate of decay for {a) and an arbitrarily slow rate of

decay for (A ).The main point here is that for a given 8 there I
n

exists a polynomial rate on {a Iwhich is sufficiently fast. Our
n

rate depends on our technique of proof; perhaps it can be improved.

Our rate can be expressed as follows: First, for each a e (0,1),

define the function G (0,8/(8+28)) -'(0,-) by

lo2 [ [2(2 +8/2)(1/2-x) 2_
G 8(X) x 8 32 /2(2+8) 2]1 (1.3)

It is easy to see that for each 8 e (0,1] G is positive and

continuous on (0, 6/(8 + 26)) and G (x) -. ~as x ,taking

values within this interval, approaches either endpoint. For each

8 e (0,1] define the number

g(8) :min < 5 /( 8 +2 5) G5 (x) .(1.4)

The polynomial rate of decay imposed on (an) will be as follows:

30 > g(5) such that a << n- as n co. (1.5)
n

In this paper the symbol << means 0.

6 I

We shall also impose a condition on the variances of the

partial sums, namely

ratedepndson ur echiqueof roo; prhas i canbe mprved -ii.!):p

Our atecanbe xprssedas ollws:Firt, or ech e 0,1 , F..
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VC > 0 , urn supn 0 -- > 0 (1.6)
n

With a different proof, perhaps it would be possible to replace

2(1.6) by simply a - as n . . -w

Theorem i: Suppose (X k  is a strictly stationary sequence of

random variables with EX0 = 0 Suppose that 0 < 8 < ,

2+8
EIX 0

1  < , and (1.6) holds. Suppose also that {Xk} satisfies

condition (1.2) with (an) satisfying (1.5) and A - 0 Then asn n

n - the process (Wn (t), 0 S t ! 1} converges weakly to a .

standard Wiener process (W(t), 0 S t < i)

Theorem 1 still holds if for each n the process Wn  is A.

replaced by the corresponding "step process"

]w 0 S t S 1) , where [x] denotes the greatest

integer S x One can see this as a corollary of Theorem 1 itself, .10:

by an easy argument using Theorem 4.1 on p. 25 of Billingsley [2]

(and one step in the proof of Theorem 1).

T heorem 2: Suppose that the hypothesis of Theroem I holds,

along with the extra assumption that 3A > I + 6/8 such that
An < lgn-A 2 02

A a< (log n) as n - . Then there exists a , 0 < C< o

-l 2 2such that limn n a = and without changing its distribution -

the process (S , n e N) can be redefined on another probability
n

7.. ...... . .
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space, together with a standard Wiener process (W(t) , t -: 0)

such that as n .w , S

2 1/2 -1/2Is - W(a n)l = o(n (log log n) -  ) a.s.

From this almost sure invariance principle one has the law of

the iterated logarithm and some other results as corollaries; see

Chapter 1 of Philipp and Stout [23]. •

Our final result will describe a class of examples.

Theorem 3: Suppose {an} and (An} are each a non-increasingn n

sequence of positive numbers such that a S A for all n , and asn n

n A , An # 0 and an << a2n Then there exists a strictly

stationary sequence (Xk) of random variables such that the 5

following four statements hold:

ti) For all n sufficiently large, one has that

~~0  ,v e'
VA e 9r 0D VB E gr n.

IP(A (I B) - P(A)P(B)I -< a + A [P(A)P(B)]I1/2
n n

(ii) A << a(n) << A as n oo
n n

(iii) p(n) = 1 for all n 2! 1

(iv) If (a*) and (A*} are sequences of positive numbers
n n

such that either

(a) a* S A* Yn 1 1 and A* = o(An) as n - - , or S
n n n n

(b) a* = o(a n ) and A* - 0 as n ,,
n n n

then for all n sufficiently large there exist
0 . * .

A e 90 and B e 9 such that
n

"- f z_- - - -'.-' ' . .:' ' -: ,.'' '' '- ' '_ ' " ' "- .- '. "- - " 0'
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1/2
JP(A n B) - P(A)P(B)l > a* + A*[P(A)P(B)] .

n n

Several comments will be made in connection with Theorem 3.

The restriction a «a in Theorem 3 is of course
n  2n

consistent with the polynomial rate of decay of (an} used inn

Theorems 1 and 2.

The restriction a S A Yn is quite reasonable. Consider forn n

a moment the case where a Z A Yn Then it is obvious thatn n

strong mixing with rate a(n) : a nn implies (1.2) and that (1.2)n .

would imply strong mixing with rate a(n) : 2a nVn Thus theren

would be practically no difference between (1.2) and the assumption

of strong mixing with rate a(n) << a as n . Thus, leaving
n

aside the cases where the sequences (an} and (An) are
ID

"imcomparable" with each other, the only interesting cases are those

in which a < A Yn or rather even a =O(A) as n -.
n n n n

If {Xk) is a strictly stationary sequence, (an} and (A
k n n

are sequences of positive numbers converging to 0 , and (1.2) holds,

then one might have hoped that (1.2) would still hold if one

judiciously changes the "balance" between the two sequences {a
nD

and (An ) , replacing either one by an appropriate "smaller"n

requence and the other by a "larger" sequence (still converging to

0). But Theorem 3(iv) shows that in general this cannot be done

effectively either way, at least if one sticks to the requirement

a < A (see the preceding paragraph).
n n

In the standard earlier weak invariance principles under the

mixing conditions discussed here, either strong mixing is assumed
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with a polynomial mixing rate (depending on the moments assumed), as

in Davydov [9], Oodaira and Yoshihara [20], and Herrndorf (15], or

p-mixing is assumed, sometimes with a logarithmic mixing rate, as in

Ibragimov [17], Peligrad [21], and Herrndorf [16], or else strong

I mixing is assumed together with a small positive limit for p(n) , V

• .as in Peligrad [22]. Theorem 3 shows that Theorem i is not

-* contained in any of these earlier results. Theorem 1 contains

Ibragimov's classic weak invariance principle for p-mixing sequences

with finite (2 + 8)-th moments [17, Theorem 3.1], but it does not

contain the corresponding classic result for strongly mixing

sequences. This last result uses the mixing rate Z a(n)6( 2+8 ) < O t

(see [20]), while Theorem 1 uses a faster rate on (a It would
n

be interesting if Theroem 1 could be improved in such a way as to

also contain this classic result under strong mixing.

Theorem 1 will be proved in Section 2. Theorem 2 will be

proved at the very end of Section 2. Theorem 3 will be proved in

Section 3.

0

.......................................... .. .... .. ... .. ."•- -

- - - - - - -. ,



I I. PROOF OF THEOREMS I AND_2.
LA

The first three lemmas will be devoted to converting (1.2), .~-.

which iu a condition on events, into related conditions on random

variables having certain meoments.

Lemma 1: Suppose A and 28 are a-fields, a > 0 ,A > 0

* and

VA EA , B e a * P(A nl B) -P(A)P(Bfl S a + A[()()

Then

IP(Afn B) -P(A)P(B)I S a + 2A.(P(A).P(A c).P(B).P(B cf1/2

Proof: Suppose A e A and B e 8 Define the events A 1

and B1  as follows:

A A If P(A) :9 1/2 B - B if P(B) 5 1/2

I ).Ac if P(A) > 1/2 1 )B c if P(B) > 1/2

Then by simple calculations,

IP(A nl B) -P(A)P(B)i JP(A1 n B)- P(A )P(B1)
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11/

[PA1 P( 1) 1/2

S a + 2A [P(A) P(A) P(B P())

-a+ A ((A)C P C 1/2ea A [() P(A) PB P(B)

Lemma 2: Suppose the hypothesis of Lemma 1 holds and

f e Y_(A) , g Zw(% , and Ef = Eg = 0 .Then 0

jEfg( _S 4aIjfjjjgjjI, + 13 (2A) 1 3 11f11211112

Proof: Our argument will be similar to the proof of Theorem 1

of Bradley (6]; we shall indicate the differences. The first change

is that the value of t in [6] is replaced by t =2A .Now t > 0

(since A > 0 by assumption). If t 2: 13-31 then 13t /31 > 1

and Lemma 2 follows from Cauchy's inequality. Henceforth we assume

(as in [63),

0 <t <13 -1(2.1)

As in [6] we can assume without loss of generality that f and g

are mean-zero non-trivial simple functions and (replacing f by -f

if necessary) that Efg k 0 .Our task is to prove (instead of eqn.

(2) of (6]) that

Efg S 4aIlf~l.11gII. + 13t ' 1 142jIqj02 (2.2)
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We represent f and g exactly as in (6), and in particular

eqn. (3) on page 169 there remains valid. Continuing to use the

* notations in that reference, on page 169, lines 16-17 there, instead

of EV .W. i H(c.,d.) we have EV.W. j a + H(c.,d. , and instead of

Efg --lq- q r.H(c.,d. we have21~ 2j=l aj a j

-1-1 :5J- q r (a + H(c.,d.)

Zi~ lj=l aj a i

* ~Now 21=1 q. f f 1 : 211flI and 2 1r ~-g 1g n

hence

Efg -14lf~.1l + qI r-- H(c.,d.
4aj ODjgI0  2i=i 2- q ir

All that remains now is to prove that

7"I-l 7-J-1 /3q r ~ci~ :513t ' 1 1 fI 11I11I 2 . To do this, we simply21i=1 2jli a j a 2

use the argument in [6, page 169, line -8 to page 170, line 111,

*(omit the z Efg in page 170, line 3 there), ending with an

application of Lemma 0 there. This completes the proof of Lemmna 2

here.

Remark: With a bit of extra work, one might be able to replace

the term 13 * (2A) 1/1in Lemma 2 by C(E) -A IEor even by

CA(l - log A) ,by adapting arguments in Bulinskii (8] or Bradley

and Bryc (7, Theorem 4.l(vi)J, or by efficiently using a classic.

equality of W. Hoeffding,
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EXY - EXEY = f [P(X S x, Y 5 y) - P(X S x)P(Y S y)]dx dy

(For this equality see Lehmann [19, p. 1139, Lemma 2]. The argument

in Bradley [6] is related to Hoeffding's equality and to arguments

in Lehmann's paper.) Lemma 2 in its present form is adequate for

our purposes.

Lemma 2 is a variant of a well known inequality in Ibragimov

and Linnik [18, Theorem 17.2.1] involving the strong mixing

coefficients a(n) The next lemma will be a similar variant of a

result of Davydov [10, Lemma 7].

Lemma 3: Suppose the hypothesis of Lemma 1 holds and

< p D 1 < q S i/p + 1/q < 1 , f e Ymax/p,2 (A) , and

g E 2max(q,2)( ) . Then

Efg- EfEgq S 20al -1gp-1/q jff l plq + 13 (2A)1/31 f11

Proof: We shall adapt Deo's [13, Lemma 1) proof of the cited

result of Davydov (10). Let p , q , f , and g be arbitrary but

fixed, satisfying the specifications in the statement of Lemma 3.

Without loss of generality we assume that liflp > 0 and Ilgil > 0
p q

Define the positive numbers C := fJJ a- I /p  and

D 1 jgl a Define the r.v.'s fo fl 1 , and g, by

f f I fl S C) , fl f - fo g : g I(IgI D) , and
00

g, g - go , where I denotes the indicator function. Then
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lEfg EfEgi l Ef 0 90 -Ef 0Eg 0 1

(2.3)

+ JEf~g 9 Ef Egll + JEflg -EflEgj l

4p

IEf 090 -Ef 0Eg 0  :5 4al f 0-Ef 11.1 jgo -Eg 0lm -

1/31
+ 13 (2A) if 0-EfOil 2 11go- Eg 0 112

(2.4)

:5 26aCD + 13 (2A) 11 f oil 2 11 g0 ll2

S 16a ~ f IIfIp 11g~l q + 13 (2A) 1 11 f 11211 q112 .p

To estimate the second term in the R.H.S. of eqn. (2.3), we

have

fEf~g - Ef Eg~l :5 2 Iif001ii1 ilI~ 2 Ilfll lIIg9i1 (2.5)

by an application of Holder's inequality, where p' is defined by

1,/p + l/p' I .(Hence p' < q .)Now

Ejg 1  = qjpdP :5 Dp- Ij dP
(Igl>D) (IgI>D)

< D~ plqlll

qI
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and hence I'"1p,: D l-q/p jgq/pF Hence by eqn. (2.5) and simple

arithmetic, P

jEf~g - Ef Eg 1  211fff 11 Dl-q/p' 1 q/p'

2a1lp l/ 11 ftt 1 gIlg (2.6)
p- q

By a similar argument, the third term on the R.H.S. of (2.3)

* can be estimated by

Eflg -EfjEgj S 2a~ 1-/p l/q f fjf 1 g1y (2.7)

By plugging eqns. (2.4), (2.6) and (2.7) into (2.3), we obtain

Lemma 3.

Now we turn our attention to the proof of Theorem 1. The main

task in this proof is to show that under the hypothesis of Theorem

I, supllnI 2 //o < . The next six lemmas are devoted to

proving this inequality, and the argument will be an adaptation of a

* well known argument of Ibragimov [17, Lemma 2.1]. Once that

inequality is proved, Theorem 1 (and also Theorem 2) will follow

fairly quickly.

In order to simplify our use of Lemma 3, let us introduce the

notation

Yn a 1 ,b, 13 .(2A n)/1(2.8)

n n

7-ir-.-.- . - *U
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where (A }is as in the hypothesis of Theorem 1. Note that under

the hypothesis of Theorem 1, bn- 0 as n -. .In what follows,

under the hypothesis of Theorem 1, we assume without loss of .

generality that

Yn al an S I and bn sl. (2.9)

Lemma 4: Suppose the hypothesis of Theorem 1 is satisfied.

Then for each nj > 0 there exists a positive constant C (a
'1

function of only n and 8 ) such that Vn I 1 Yk 2: 1 ,8 *

such that 8/2 6 * < 5** S a Pit.-

I2n
1I2+8* ~ t nI2+8** (2+lOk+1

+ 6b~ +11 ' /n +* + Cc, + 2k IIX0I2~

IL-

Proof: First let us suppose that n k 1 k z I ,and

6 /2 8 * < 8** S 8 and let us carry out some calculations. Define

*the notation ~ =Snk - Then by !inkowski's inequality,

2nl28 flSn n n2+8* + ~n+k 5n112+8*+ISnk-

(2.10)

s US + U + 2k Xn n 2+8* 110112+.

Now let us estimate the term EIS +I .+5 Recall that
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I by hypothesis.

*EISA + I. S28 E(S~ + 2I I1 ~ 5 + 1- 1

2ES12+8* + EIS I 1 s 2 +ES121918

(2.11)

1+8* 15
+ 2EJS 1-13 + 2EJS 1 I I sI

It8* +* 2 E 2 8*

S2EIS~ I12+8* I I I + 12 I It lI

Cwhere the last inequality comes from the elementary fact that if
x 2: 0 and y k 0 are real numbers then

1+* 1+8* 5* 2 2 8*
xy + x y :Sx y +x y

Next ~ ~ ~ ~ 8 le setmt I 2.Wesal plyHdrs

inequality, and Lemma 3 (and (2.8)) with p =q =2(2+8**)/(2.5*)

* and (2.9).

* ElSt 8 * ~ 2 EI 12+8*)(28*)/(2+8*)

L (E~S~ (2+8*)/2)28*/(2+8*)

25*

2Oa2-8* 20 1/pl/q 11IS1 (2+8*)/2 11  11 ins 1 (2+5*)/2~ 11q 6

k"I~gI2 "S'112

+Eg~( 2 +8*)/2E~ (2+6*)/2
Ti n
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2-8 [2a~l 8*/ +*)1 2+8* 128*/(2+8)
Lts~tnI 2+0a +1 ~Sn28*j

nII i2..8* 2 k+1 "n2+8

2+8* 2+*L + bk+Its 112+* + IIsyjI J
2 k+l 2+8**n(28*/

2-*28 * 28*/(+*
5~~~~ ~ ~ ~ ~ Sn" 2123* 2ak+ 1S +

+2 +8* 28**
+ klSn112+8 ** + 112 I

2 8

EI +8*28*28 8/3*.8)(28 /

n n11* k~ +I ak+1 bkl

6S2 - * 28*
+lnl 2+8l n 2 (.2

In roingLema4 i sffcestocosidr nl vaue o
The me0stmat hod Hencefort we imos thi reticnd neb 2.11ore

......... n
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'e (0,1) define the constant C by C 6(2+8)/8 -2/8 Then --
"25* "28* -. (2 8,/ 8

for each such 'I C Z 6(2+")/(2") (2 -8*)/(28*) and by simple

arithmetic, (6/C) I / (2- ) _ (1/6)1/(2 *) Hence either

(1) On/llSll2+8** - (7/6) 1/ ( 2 8 . )  or -"-

(ii) on/llSnll2+8** (6/C)l/(2- ) . If (i) holds then by simple

2-* 22* 2+8*

simple arithmetic, 611Sn12+5,an 5 C 28 In either case, by
n 28**n.'

(2.12), for each 1 E (0,1]

2+5* 2+8* [(2"*-+1)/(2+8) 2 6./3
EISn + n < 1 12 8** + 12Oak+l +6b k+ 1 + '

2+k*+ C ".
'n

and hence (using the trivial fact that C > 1)

liSn +n"2+5*

2
1Sn12 (2 + 120a8 '8 * - )/ - 2+8 + 6b5/ 3 + ]/(2+*) + C
n 2 8 ** k+l k+l +n n

Since C depends only on n and 5 , Lemma 4 follows from (2.10).'i|

In what follows, expressions such as 2 will frequently occur

as subscripts. For typographical convenience we shall use the . - -

following notation:

•.. ........? .(-..-... ... .......... .
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VX E R ,doub(x) 2

When necessary we shall use the notation [x] greatest

integer I x

Also, if r =0 then (anything) is interpreted to be

0.

Lemma .5: Suppose the hypothesis of Theorem 1 is satisfied.

Then 30 > 0 3 A > 0 such that Yr e (0,1,2,....

r

+ A (~ 2( )l2 b

Proof: Using (1.5) we fix 6 > q(5) such that

a =o(n )as n -. .(2.13)n

Using (1.3), (1,4) we fix v 0 < I < 5/(8+25) ,such that

6 > G 8(v Then we fix c ,0< c <V such that

l 2 [2(2+8/2)(1/2Y)_2]
e>

2 2 -C6 /[2(2+5)

maw
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By elementary arithmetic,

2 2

2-9ca/[2(2+8)] < 120 - 1 (2 (2+8/2)
(1 /2-7) 2)

and hence

2 + 120 2- 0c 2 /[2(2+8) 2 ] < 2(2+ /2)(1/2- Y )

By (2.13), a < n-0 for all n sufficiently large. Hence for alln

positive integers r sufficiently large,

2 2 2 2
8 /[2r(2+5) < 2- c 2 /[2(2+5) '

a(doub(rc)]+l < 2

and hence

120 8 /(2r(2+5) 2  < 2 (2+5/2)(1/2-v) ,.2 + 10 adoub~r ..+i[ l

Fix p , C < p < V Fix T,

0 < 1 < 2 (2+8/2)(I/2
-p) _ 2(2+5/2)(1/2 - v) Since bk - 0 as

k -, - , one has that for all integers r sufficiently large,

6bdoub(r)+l < 2 (2+8/2)(1/2-p) 2 (2+5/2)(1/2-v) Hence for

all integers r sufficiently large,

p 0
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2 2

6 2 / [2r(2+6) 2  / 3  1(2+/2)
(2 + 120 a[doub(rc))+ +6 [doub(rE)]+l + )

< 2 I/2 -  (2. 14)

Fix J such that

0 < 0 < P . (2.15)

Let us now suppose that r is a positive integer so large that

(2.14) holds, and let us carry out some calculations. For each

i 0,1,2,...,r define 6. :6/2 + i 6/(2r) Then for each

i 1,2,...,r , 6(6 i - 6 i-I )/(2+5) = 62/[2r(2+6)2] and hence by

Lemma 4 (with k ; [2 r) and (2.14),

Vn 1 , (IS2 nl26 - ISnII2+6 21/2-p + C 0 + 2 rE+l X0 U2 +"

where C is as in the statement of Lemma 4. Applying this

repeatedly, with (n,i) being (1,r) , then (2,r-1) , then
I

(4,r-2) , then (8,r-3) .... we finally obtain

IISdoub(r) 2+6/2 - [ 2 r(l/2 - )

v (i-I) (1/2-p) rE:- 1 ]  iX~ +
+ 2 .2 i-

,
%- (i - ( / /2 -"

+ C i=l ( '-doub(r-i)

- .r n-.
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-< (2r4l) 2r(l/2-P+c)

r

.%''

++ i= 2(1l)(l/2 ~doub(r-i)

By (2.15), for all r sufficiently large, [?[[-i

II Sdouba (r (1 . Also, Lm 5 ho fo2 +0

r

that doubr- )(i/2-i)()/Ydouub -

+ CF n 2 1 d (r-i) n

By replacing C by a larger constant if necessary, we can include

the (finitely many) remaining values of r ->I Thus Lemma 5 holds L •

for all r_> 1 Also, Lemma 5 holds for r = 0 by the simple"...

Lma4 Siial toequation (2.10)coplte the

equatin IISI12+5/2 =IIX0112+6/2 -<IIX0112+8 Thsometshe.-"

proof.

Lemma 6: Suppose the hypothesis of Theorem I is satisfied.i[i [ii ii iii

Then V'y > 0 , 3B It> 0 such that Yi , r with 0 S i _< r ,one has

that doub(r )  2! B 2doub(i )

Proof: First let us suppose that n I and k- 0 ,and let ;

us carry out some calculations. Let be as in the proof of
n

Lemma 4. Similarly to equation (2.10) there,

- e

_. • . .i.':ii ['i• if' i.' i . "'.....'.ili[i~il.'i.:'i~.. . .".. . . . .. . . . . . . ..... . . . .... '-..".. . ' . .. . . .... . . . . . . . ... *.
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II~nI II + _§n112 2kII XOII 2

Applying Lemma 3 with p q =2 + 3/2 ,along with (2.8), we obtain

lCov(S n,'9n) S 20a 1 ~ 5 IISnI 2 +8 / 2 + b k+1IISnII 2

and hence

ISn n11I2 [2(1-b k+l)lSn112 4ak+l 3 I1SnI1 1/2

kl n2 40a8  n 2+8/2

1//2

(where .J is replaced by 0 if (1is negative) and hence

IIS2~I 2 2 2 (1-b HIS 112 401/2 H!8 2 8 ,s2"2ki-l n a k+l n112+8/2

(2.16)

-2kIIX 0 112

We shall come back to (2.16) shortly. Now let 0 < P < 1/2

and A > 0 be as in Lemma 5. Let F denote the set of all

non-negative integers r such that

/2 r(1/2-p) >/ (/-)V ,,.,0doub( r) 0 doub(i) = ~ .,

We need to show that is an infinite set. To do this, it

suffices to show that s sup e 12a d/2-13) . Now for
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any n a 1I defining r by 2r S n < 2r+ and expressing n in

binary form, we have that

r r -5

n 1 0doub(i) 0

r
r=/2P 2- 2 3(/2-P)

s 20

j =

Since the last sum is finite, the assumption (1.6) (with any

c e (0,2p)) implies s = .Hence Y is an infinite set.

Obviously, for each r e Y one has that

0doubVr =o Y 0,1,...,r and hence (see Lemma 5)
doub~r) doub(i)

II2 II X
Idoub(r)112+8/2 01+

r

+A doub(r) il

The sum is << 2r/-) as r -. ~.We fix B > 0 such that for
tI~d ~ B r(l/2-p)

all r 2 YdoubSrB 2 By (2.16),

for all k k 0 and r such that r 1 e
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0doub (r) ~ lk+l )odoub(r-1)

40 k+l (r) /2  odoub(r-1)

-2ko 1

Referring to (1.3), (1.4), it is easy to show that

g(8) > (8+28)/b Using (1.5) in the hypothesis of Theorem 1, we

*fix 9 > (8+28)/8 such that a k«< k as kc- We fix Q > 0

such that for all k Z 0 and r such that r -1 e Y,

* 0 ~doub(r) k 212(b )doub( r-1)

-Q (k+l)-9 8/(8 +2 8) 2 (rl)(1/2 -P)odu~

-2ka 1

Now suppose r -I e YE and > >0 .Taking

* k =[) Ob )J we obtain

1/2
0doub(r) ~ Ikl odb(l-)

- I-81(8+2.) 1-08/1(8+26) 2 (r-1)(1/2-P)
adb(l-)

1 doub(r-l)
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Now suppose Y > 0 .Let us fix I~ > 0 so small that

1 27111Xfi > 2~ Then as r -. ~ subject to the restriction

r - 1 e V , bkl- 0 (since k o ( ) and

a 2 r-)/-) =o(Odur ) (by the definition of

* ~ Y and the fact that 08/(8+28) > 1 by choice of 6).Hence

*there exists ro = r 0 (y) such that Yr k r 0  such that r - 1E

0du)a 211 0~obr1 Considering some 7v , 0 < Y < P one

has from the definition of Y that if r 2: r 0 (y) and r - 1 e 50P

then r e . Since Y is an infinite set, such an r must exist,

and by induction one has that Y1 contains all but finitely many

positive integers.

Now let Y > 0 be arbitrary but fixed. By the preceding

* argument there exists r* =r*(v) such that Yr k r*

0doub(r) a21 doub(r1) Dfn

c Inf~o b /(2l 2 ob )) r I 5 r

Define B c cr .Then by a simple argument, B > 0 and

Vi , r , 0 :5 i S r o doub(r a: B I 2 r af/ ~o b(.) Thus

Lemma 6 holds. This completes the proof.

Lemma 7: Suppose the hypothesis of Theorem I is satisfied.

Then there exists a constant B > 0 such that Yr a 0

Idub(r) 2+8/2 doub(r)
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Proof: Fix p > 0 and A > 0 as in Lemma 5. Fix 7

0 < < Fix B > 0 as inLemma 6. From Lemma 5we have that

* for each r k 0

IISdb(r)12+3/2

doub(r) a 0 doub (r) 11II 81.. A

r
+ A ~ f2( 1/2-P) doub(r-i ]]

odob J=[ 02+8 ~

r1

+ AB 7  2 (il(/-3 2 -l/-]

By Lemma 6 for our fixed vthe term 2r /P/adubr vanishes

as r -#c Also, the sum 2~1 ~~ 22~ is

*bounded above by 2 (YP < .Lemma 7 follows.

Lemma 8: Suppose the hypothesis of Theorem I holds. Then

*there exists a constant D > 0 such that Yr =0,1,2,..

Y Vn 2r: ~n :2 r~ one has a D a hence a2 CO as
n doub(r) 'n

n
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Pr-oof: Obviously we can ignore the case n 2 2 r (for D 1

r r+lwill work then). Let us suppose that r k 0 2 < n 5 2 ,and

*k I and let us carry out some calculations. Define

~db~r :S +k S n-doub~+k Arguing as in Lemma 6, we have

SI 2  1 ISdb + ~d ~ 2-2k 11X0112  (2.17)

Applying Lemma 3 with p =2 and q 2 + 5/2 ,we have

lCOV(S dbWr doub(r)l f A,

S ~~ an-~2 )~ doub( r) 2 ~doub(r) 282

and hence

E[Sn-doub(r) +doub(r)

k ES + ES2  -2b IS 11II2
n-doub(r) doub(r) k n-doub(r) 2 1 doub(r) 2I

2a 8 /(8 +28 )IIS *du~)11Sobr1281

k 2-ob~) 2'5 ou~) 22

~ES +ES 2  b 2E + ES2n-doub(r) doub(r) bk(E-db(r) doub(r)

a k (8 2 8 (ESdObr + IISdou.b(r)II2+5,12)

..........................
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(1" b a )ES 2

k'l k n-doub (r)

+ (1 -b B- E
k k doub (r)

where B is as Lemma 7.

Fix k such that 1 -b -mx(, 2Ha1828 1/2 .Thenk ma(B)ak

Yr ZO , Yn , 2< n : 2r+ one has that

ESn-doub(r) +doub(r)] 12E doub(r) adhneb 21)

II 2 : (1/2) IISd b 2- 2kII 0 I 2

r r+1
By Lemma 6, if r is sufficiently large and 2 < n :5 2 then

IISn112 2: (1/2 )11ldoub(r)112 Replacing 2/2 by a smaller positive

constant if necessary, we can obtain Lemma 8. (The second

conclusion of Lemma 8 now follows from Lemma 6.)

Lemma 9: If the hypothesis of Theorem 1 is satisfied, then

sup 1 1 IInI21 12O <

Proof: Let the constants B and D be as in Lemmas 7 and 8.

Fix Y > 0 .Let B be as in Lemma 6.

F Let n k I be arbitrary but fixed. Define r by

2 n < 2r~ Expressing n in binary form, we obtain
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r
II~n12+82 I5 doub(i)1"2+8/2

r
Bo

i~l doub(i)

B B 2 doub.r

[ B B 1D- 1 2- j(/ -7
J=On

Since the term in the brackets is a (finite) constant, Lemma 9 is

proved.

Proof of Theorem_1: Recall that (1.2) implies strong mixing.

By Lemma 9 and Ibragimov and Linnik (18, p. 307, Theorem 17.2.2],

sup m_, 0n2:OlCorr(Xm +...+ X0 0, +...+ X I converges to 0 as

I -. .By Ibragimov and Linnik [18, p. 330, lines 6-14] and Lemma

8, Var S n n h(n) where h (0,-) -. (0,-) is a slowly varying

function. Hence by Lemma 9, Ibragimov and Linnik [18, p.397,

property (3)] (for 1/h as well as h ),and some simple

calculations,

EIW ns)-W n(t)I2 8 1

I-i1+8/5

n ~~~~ 1OD s S

n 0 !5s < t0
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Hence in Billingsley (2, p.157, Theorem 19.2] the tightness

condition (eqn. (19.15) there) is satisfied. (See Billingsley [2],

p.95, Theorem 12.3 and eqn. (12.51) and p.55, Theorem 8.2.) In [2,

Theorem 19.2] the uniform integrability condition is satisfied by

Lemma 9. Now Theorem 1 follows from Billingsley [2, Theorem 19.2]

(the rest of the conditions there are easy to check).

Proof of Theorem 2: By the hypothesis of Theorem 2, one has

that {Xk) is strongly mixing with mixing rate a(n) << (log n)--A

(where A is as in the hypothesis of Theorem 2). Now Theorem 2

follows immediately from Lemmas 8 and 9 and Bradley (5, Theorem 4].

I

* . . . . * ..
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III. PROOF OF THEOREM 3

Without loss of generality we assume that A 5 1 Yn k , and
n

that the sequence (an} is strictly decreasing.

For each n a i define the positive number

n : (an - a n+l)/(6n)

Let X n  (= k e Z) n = 0,1,2,... be strictly

stationary sequences of r.v.'s with the following properties:

(3.1) These sequences X , X , X are independent

of each other.

(0

(3.2) The sequence X(0) satisfies a(n) = A n/8 and

p(n) = A /2 for every n k 1 (This is possible by Theorem 6 -
n

and the two lines immediately following Theorem 6 - in Bradley [4,

page 43.)

(3.3) For each n = 1,2,3 .... the sequences

X(n j) (X k j mod n) , j = 1,2,...,n are independent of

each other.

(3.4) For each n = 1,2,3,..., each j 1,2,...,n , the

sequence X n '.) defined in (3.3) is a strictly stationary Markov

chain with state space (1,2,3,4) , with invariant marginal

probability vector [(1-C) 2, (l-C , (l-Cn ) , and withn n n n n n
one-step transition probability matrix

. . *..
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l-En En 0 0

0 0 i-E n -n n.. .

1-C 0 0n n

0 0 n- nL
(Thus the (f,m)-th entry of this matrix is

PlX(n
)  Mi I(n)

(k+l)n+j = kn -j

Note that for each n z I , the distribution of the sequence

X (n ) is completely determined by (3.3) and (3.4). Also note that

for each n 2 1 , each J = 1,2,...,n , the Markov chain X (n j) is

1-dependent (one can see this by squaring the transition probability

(n)
matrix). Hence for each n > 1 the sequence X is n-dependent;

this fact will be useful later on.

Let f : R x R x R x.R.. P be a bimeasurable isomorphism.

(That is, both f and f- are Borel-measurable functions. Such

an f is well known to exist.) Define the sequence

X (Xk , k Z} by

( ) X(1) (2) . k Z( . 1,-,.,"

X k :=f k -k 'k

By an elementary argument, the sequence X is strictly stationary.

For -S S J S L S define the a-field

I

L(n L (Xk J k L) (n) , n 0 , J k < L)k :k

The last equality here holds by the properties of f -

. . . • .

. . .,...
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We shall now prove that the sequence X satisfies properties

(I(ii), (iii), and (iv) in Theorem 3. For arbitrary a-fields A

arnd we shall use the notations

suplP(AflB)-P(A)P(Bfl ,A e A ,B e P

,P(A,!e) supICorr(f,g)l f e Y2 (A) ,g e X (M)

Proof of Theorem 3_(11: For each N= 1,2,3,.... define the

event D Nby

DN: (x"- 1 Y(n,k) such that n 2: N and -n + 1 :5 kc : 0) -

N k

Now for each ni 1,2,3,..., P(X (n)- 1) =(1 -£2 1 - 2e
0 n n

Hence for each n = 1,2,3,.... P(X~~ -(n) -(n I) 1 -2ne

-n+l 0 n
Hence for each N =1,2,3,...,

P(D N 2: 1 2ne n 1 2 (a - a nl)/6

n=N n=N n n+

1 a aN!/3  1/2 .(3.6)

(Recall that aN S a 1 : A1 5 1 .) By an elementary argument, for

each N 1,2,3,.... the probability measure Q on qc*- defined by

QN(A) :=P(AIDN has the following properties: Under Q the--

sequences X , , ... are independent of each other,
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*and the sequences X x l)...,x(l have the same

distributions as they have under the given probability measure P.

* .Thus under QN the sequences X x~, .. x( are each at

* .most (N-l)--dependent. Also, under QN for each n N the

sequence x (n) has probability distribution given by :

*P(.I (n) - (n)- 1) and in particular (under Q Vn 2: N)

(0) (n)
Thus under Q N the a-fields o(X) ONX n 2: 1, k :S0),

and o (n) , n k I ,k 2: N) are independent. Consequently, using
o(k

(3.2), YN 2 1

a

P F0 =F PQ ( (0) ,k SO0) k ,(O k 2! N))

N N

P P(o (X(O k 0) a a(X (0 k N)) A A 2

The first equality here follows from the well known fact that if

Al !1 fA 2  and '~2are a-fields on some probability space and

A %1 A and % are independent, thnpA V A TV~
A1V1 2' '2 thn 1 2' 1V '2)

p(A 1  ) This fact is a simple consequence of the identity

p(A,%) suptIE(fl%) -EftIl /1f11 2  f E Y (A) .Thus YN 2! 1 one has

that

VA 4E F YB eTN IQN (AB)-QN (A)Q N(B)i :5 (A N/2)[Q N(A)Q N(B)]1 1

(3.7)
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By (3.6) and an elmentary argument, YN Z 1 ,VA 7 one

has that

1Q A ( )I.(. (A I: (DN S aN/

*40

IN(A) B) IP(AIDN) S () PD)~a/

* ~ ~~ ~~ HecIy(3Q n (3.),Q one has)] tha IP(N [ (A 1,,,.. A E

S. a( +l B) - (An(B) Q Q()

:5 a4 + (A /2)[ B) Q(A)Q N(B) 

:9 a~ + (A /2)[Q(AQNBf )/

I S a4 + AN!2)[p(A1/2/

:5 a N+ A (P(A)P(B))"N N

This completes the proof of Theorem 3(i).

Proof of Theo rem 3(1 1: For each n~ I

... . . .. . . . . . . . . . . . . . . . . - - .... . *.. ..



% (0)(0)
A/8 a c(a (X~0  k :9 0) , (Xk k z n))

0
:S a (S ,) a + A I 2A

by (3.2), Theorem 3(i), and the assumption a S A .Thus (ii)
n n

holds.

Proof of TheorpM_ 3i: For each n 2: 1

Corr(I(X~n 0 2 or 4) ,I(X~~ n 3 or 4)) 1
0 A

0by an elementary calculation, and hence p(Y-, 9_ n )

Proof of Theorem_3(ivyj: Recall the elementary fact that if

(1.2) holds then a(n) S a + A ,n =1,2,......By essentially then n

same elementary argument, if hypothesis (a) in (iv) holds then the

conclusion of (iv) follows quickly from Theorem 3(11). Now let us

assume that hypothesis (b) in (iv) holds, namely a* =o(a )andn n
A-* 0 ; we shall show that under these assumptions too then

conclusion of (iv) holds. _

For each n 2 define the events A and B by
n n

A n: (Xn k 2 or 4 for some integer kc , -n/2 < k SO0)

B Bn= (Xin k 3 or 4 for some integer kc , n/2 < k S n) By an

elementary calculation, Vn z 1 ,P(A) P(B) and P(B JA) 1

and also P(A) ne n/2  as n -. ~.(Here and in what follows, the

notation cn d means Lim c /d =1.)

n n n n
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For each N =1,2,3,... define the events A* and B* by

A AU A U A U..N N N-Fl N+2

B*BN UN+l N2U

By an elementary calculation, VN Z 1 ,P(A*) =P(B*) and
N N

P(B*IAN*) = 1 ;and also, as N -. ,P(AA) - 2n=N ncn12 = a,/12

Hence, for each n1 1,2,3,... A* e and B* E ; and
2n 2n n

as n

IP(* l n P(A~ 2) P(B; P(A *2)[1 P(A ;)]

P(A (A 2PB ;)]l/2-a

n 2/2

* see that If hypothesis (b) In Theorem 3(iv) holds, then the

conclusion of (iv) also holds. This completes the proof of (iv). .
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